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Design the Controller

• “Design Field-Oriented Control Algorithm” on page 1-2
• “Design Current and Position Scaling Subsystem” on page 1-3
• “Design Current Controller Subsystem” on page 1-6
• “Perform Manual Gain-tuning of Current Controller” on page 1-9
• “Design Speed Control Algorithm” on page 1-12
• “Perform Manual Gain-Tuning of Speed Controller” on page 1-15
• “Code Verification and Profiling Using Processor-In-the-Loop Testing” on page 1-16
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Design Field-Oriented Control Algorithm
The implementation of speed control algorithm for a motor involves these tasks:

• Current scaling - Read the current from ADC counts and convert to PU
• QEP position decoding - Read the QEP position counts and calculate the rotor electrical position
• Torque control - Current control in d-q axis
• Speed control

The below steps can help you to implement speed control algorithm for a PMSM using Motor Control
Blockset. These guidelines to build speed control algorithm are also related to the example model
mcb_pmsm_foc_qep_f28379d and explains the steps to tune the control parameters for d-axis and
q-axis current controllers and the speed controller.

1 “Design Current and Position Scaling Subsystem” on page 1-3
2 “Design Current Controller Subsystem” on page 1-6
3 “Perform Manual Gain-tuning of Current Controller” on page 1-9
4 “Design Speed Control Algorithm” on page 1-12
5 “Perform Manual Gain-Tuning of Speed Controller” on page 1-15

Note In these workflow steps, variables are used for defining datatypes, execution time of current
controller, and execution time of speed controller. Refer to the initialization script of the example
model mcb_pmsm_foc_qep_f28379d for the details of the variables defined in these steps.

Tip A basic understanding of Simulink is a prerequisite for following this workflow as these workflow
steps do not provide details about tasks like defining datatype in a constant block or usage of math
operations blocks in Simulink.

Refer to the section “Estimate Motor Parameters by Using Motor Control Blockset Parameter
Estimation Tool” for estimating the motor parameters, and then refer to “Creating Plant Model Using
Motor Control Blockset” on page 3-2 to design a plant model, which helps to verify the control
algorithm in simulation.

1 Design the Controller
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Design Current and Position Scaling Subsystem
To design current and position scaling subsystem:

1 Read the current in ADC counts and convert to Per-Unit (PU).

IaOffset and IbOffset are the ADC offsets for current measurement and they are hardware
specific. The default ADC offset (CtSensAOffset and CtSensBOffset) is given in the file
mcb_SetInverterParameters.m for few commercially available inverters. For details about
ADC offset calibration in hardware, see “Run 3-Phase AC Motors in Open-loop Control and
Calibrate ADC Offset”.

In this subsystem shown in the above figure, the motor phase current measured in ADC counts is
converted to current in Per-Unit (PU). PU_System.I_base refers to the base current. For
details, see “Per-Unit System”. Refer to mcb_SetPUSystem.m that computes the Per-unit values
for the system.

Use base values for computing real world values from per-unit. For real world value or SI unit
implementation, refer to the example model mcb_pmsm_foc_qep_f28379d_SIUnit.

The data-store memory IaOffset and IbOffset are used for sharing the data between the
subsystems.

2 Read the position from the QEP pulse count.

 Design Current and Position Scaling Subsystem
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The Quadrature Decoder block reads the position count from plant model or hardware driver
block. The block converts the rotor mechanical position in encoder position counts to rotor
mechanical angle in Per-Unit (0-1).

The Mech2Elec Position block adjusted the mechanical angle for QEP offset and converts them to
electrical angle. This rotor electrical angle is required for the FOC algorithm to spin the motor.
Refer to “Quadrature Encoder Offset Calibration for PMSM Motor” for calculating the QEP
encoder offset.

The Speed Measurement block calculates speed from the rotor position. In Speed Measurement
block mask, specify the value of the Delays for speed calculation (number of samples)
parameter. We selected the value 20 in this workflow so that the block can measure the maximum
speed of the motor that is under test. Speed measurement block outputs speed in PU.

3 Create subsystems to include the current scaling and position decoding logic, as explained in the
above steps.

1 Design the Controller
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Design Current Controller Subsystem
1 From the Motor Control Blocksetlibrary in Simulink Library browser, use the Discrete PI

controller with anti-windup & reset block (under /Controls/Controllers library), for designing d-
axis and q-axis current control.

The MATLAB function mcb.internal.SetControllerParameters calculates the PI control
gains for d and q axis current controller and speed controller. For details on control parameter
gain estimation, refer to “Estimate Control Gains from Motor Parameters”. Refer to the file
mcb_pmsm_foc_qep_f28379d_data.m for Ts (50 μs).

The Enable variable is Data-store memory to reset the controller and this is optional.

Create a subsystem (Current_Controllers) for d-axis and q-axis PI controllers for controlling
the d-axis and q-axis current.

2 Add the blocks Clarke Transform, Park Transform, Inverse Park Transform, and Space Vector
Generator from Motor Control Blockset/Controls/Math Transforms to the
Current_controllers subsystem (from previous step) as shown in this figure:

3 Create a subsystem named Closed Loop Control as shown in this figure:

1 Design the Controller
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4 Create subsystem for scaling the PWM outputs. This subsystem outputs normalized PWM duty
(0-1) for the plant model.

5 Integrate the Current scaling, QEP position decoding, Closed Loop Control, and Output Scaling
logic. Add trigger from Simulink\Ports & Subsystems to the subsystem and select the Trigger
type as function-call.

6 Integrate the current controller to form a subsystem. Add Function-Call Generator from
Simulink/Ports & Subsystems. In Function-Call Generator dialog, enter Sample time as the
control-loop sample time Ts (default 50e-6 s).

 Design Current Controller Subsystem
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7 Integrate the plant model and controller. For detailed steps on how to create a plant model for
motor control system, refer to “Creating Plant Model Using Motor Control Blockset” on page 3-
2.

1 Design the Controller
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Perform Manual Gain-tuning of Current Controller
In this step, you perform gain tuning for d-axis and q-axis current controller manually.

This step is optional and helps you to tune the control gain parameters for current controller. Provide
step change for Id_ref and analyze the current controller performance from step response of
Id_meas. Repeat the same with Iq_ref for tuning the q-axis current controller. In the plant model,
lock the rotor to ensure motor is not spinning when step change is given for Id_ref or Iq_ref. In
the Surface Mount PMSM block mask, select Speed for Mechanical input configuration. Provide
speed input as 0 and this ensures that the rotor is locked.

This simulation model allows manual gain tuning for current controller. Give a step input to Iq_ref
in the range (0 to 0.2) PU and observe the measured feedback. Adjust control parameters of current
controller to meet the control objectives.

 Perform Manual Gain-tuning of Current Controller
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Run simulation and plot the Iq_ref_PU and Iq_meas_PU and analyze the step response. This
simulation model allows to tune the control parameters for q-axis controller to meet the control
objectives.

1 Design the Controller
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Adjust the control parameters to meet the control objective. You can follow the same method for
tuning the d-axis current controller.

 Perform Manual Gain-tuning of Current Controller
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Design Speed Control Algorithm
To design a speed control algorithm:

1 Add a speed controller for PMSM motor. Speed control loop outputs Iq_ref current and this is the
input for the current controller.

In the Simulink library browser, select the Discrete PI controller with anti-windup & reset block
from Motor Control Blockset/Controls/Controllers library.

The MATLAB function mcb.internal.SetControllerParameters calculates the PI control
gains for d and q axis current controller and speed controller. For more details on control
parameter gain estimation, refer to the section “Estimate Control Gains from Motor Parameters”.
Refer to mcb_pmsm_foc_qep_f28379d_data.m for Ts_speed (500 μs). Enable Data-store
memory to reset the controller and this is optional.

2 Create a subsystem for speed controller and add a rate-transition block to the inputs with sample
time as Ts_speed (execution time of speed control loop).

1 Design the Controller
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3 Integrate the above speed controller that you designed with the current controller and plant
integrated model. Connect Iq_ref_PU output from Speed controller to the current controller input
through a rate-transition block as both are executing in different sample rates. The below figure
shows the settings for the Rate-Transition block connected between the speed controller and
current controller.

 Design Speed Control Algorithm
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Perform Manual Gain-Tuning of Speed Controller
To manually tune the speed controller, add a step input (0.2 to 0.5 PU) to the speed reference input in
Speed Controller subsystem. Monitor the step response of the speed and tune the speed controller
control parameters. The below figure shows the step response of the speed controller.

The preceding steps gives an approach for speed controller implementation for a PMSM motor in
simulation. Run the simulation and analyze the controller performance.

You can generate the C code from this control algorithm using Embedded Coder®. You can deploy this
code and the hardware drivers to the target hardware.

 Perform Manual Gain-Tuning of Speed Controller
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Code Verification and Profiling Using Processor-In-the-Loop
Testing

In Processor-In-the-Loop (PIL) simulation, the control algorithm executes in the target hardware but
the plant model runs on the host machine. The plant model (running on the host machine) simulates
the input and output signals for the controller (running on the target hardware) and communicates
with the controller by using serial communication interface. Therefore, you can use PIL simulation to
determine the execution time on the target hardware, which you can compare with the execution
time for simulating the model on the host machine.

The execution time or the performance metrics of an algorithm that you get from PIL simulation,
helps you to detect algorithm overrun in the target hardware. The PIL profiling report indicates the
average and maximum execution time of an algorithm on the target hardware. As an example, we
explain PIL profiling on the LAUNCHXL-F28379D hardware board.

We use the example "mcb_pmsm_foc_sim.slx" to demonstrate code verification in PIL. This example
shows PIL profiling for the "Current Control" subsystem available in the model. This subsystem
includes Field-Oriented Control (FOC), current scaling (per-unit conversion), speed measurement,
and rotor position scaling (computation of angle from the encoder position counts) algorithms. The
PIL profiling report shows the average execution and maximum execution times of the control
algorithm in the target hardware.

This section addresses these tasks:

• Verify code execution by using PIL testing by comparing the algorithm in the simulation and target
hardware operating modes.

• Perform PIL profiling by measuring the algorithm execution time in the target hardware and
generate the PIL profiling report.

Required MathWorks Products
• Embedded Coder
• Embedded Coder Support Package for Texas Instruments C2000 Processors

Supported Hardware
• LAUNCHXL-F28379D controller hardware board
• BOOSTXL-DRV8305 and BOOSTXL-3PHGANINV (supported inverters)
• Teknic motor M-2310P, BLY171D, and BLY172S (supported motors with Hall sensors) or Teknic

motor M-2310P and BLY171D (motors that support quadrature encoder)
• DC power supply (24V)

Prepare PIL model
Use these steps to prepare the PIL model for profiling:

1 Open the model "mcb_pmsm_foc_sim.slx" by using this command:

open_system('mcb_pmsm_foc_sim.slx');

1 Design the Controller
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This model simulates the PMSM motor and FOC algorithm for closed-loop speed control.
2 Click Hardware Settings in the Hardware tab of the Simulink tool strip.
3 Select TI Delfino F2837xD in the Hardware board field available in the Hardware

Implementation tab of the Configuration Paramters window.

 Code Verification and Profiling Using Processor-In-the-Loop Testing
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Verify Code by Using PIL
Use these steps to verify the code in PIL:

1 Open the script file "mcb_PIL_config_TI.m" to set the configuration parameters:

edit('mcb_PIL_config_TI.m');
2 Update the communication port number that you are using.

1 Design the Controller
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3 Run the script to update the configuration parameters of the simulation model and the PIL
preferences.

4 Right-click the "Current Control" subsystem of the "mcb_pmsm_foc_sim.slx" example model and
select Deploy this Subsystem to Hardware in the C/C++ Code menu.

 Code Verification and Profiling Using Processor-In-the-Loop Testing
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The system displays the Build code for Subsystem dialog box. Select Inlined storage class
for all parameters.

1 Design the Controller
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5 Click Build to create a model named "untitiled" that includes a PIL subsystem called "Current
Control."

 Code Verification and Profiling Using Processor-In-the-Loop Testing
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6 Rename the "Current Control" subsystem to "Current Control (PIL)."

1 Design the Controller
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7 Copy the "Current Control (PIL" subsystem and replace the "Current Control" subsystem in the
"mcb_pmsm_foc_sim.slx" example model.

 Code Verification and Profiling Using Processor-In-the-Loop Testing
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In the PIL mode, the system deploys the "Current Control (PIL)" subsystem to the target and
executes the subsystem in the target hardware.

8 To compare the algorithm execution in the host machine simulation and the PIL simulation,
connect the "Current Control" subsystem in parallel to the "Current Control (PIL)" subsystem. In
addition, enable signal logging in the subsystem outputs.

9 In the Simulink toolstrip, select the SIL/PIL Manager app in the Apps tab.

10 In the SIL/PIL toolstrip, select SIL/PIL Sim Only.

11 Select Model blocks in SIL/PIL mode in the System Under Test field.

1 Design the Controller
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12 Click Run SIL/PIL on the SIL/PIL toolstrip to build the "Current Control (PIL)" subsystem and
deploy it to the target.

After the system deploys the subsystem, the "Current Control (PIL)" subsystem executes on the
target hardware processor, whereas the plant model runs on the host machine.

Analyze PIL profiling results
When PIL simulation ends, the system generates a profiling report.

Note The PIL simulation takes more time than the host machine based simulation. This happens
because of the serial communications (related to inputs and outputs of the "Current Control (PIL)")
between the host machine and subsystem that runs on the target hardware.
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The profiling report shows the maximum and average execution times of the "Current Control (PIL)"
subsystem running on the target hardware.

You can use Data Inspector on the Simulink tab to compare the signals logged during the host
machine based simulation and the PIL simulation (executed on the target). Therefore, you can verify
the accuracy of the host machine based simulation and PIL simulation.

This plot compares the "speed feedback" signals from the "Current Control (PIL)" and "Current
Control" subsystems.

1 Design the Controller
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Note If the execution time exceeds 60% of the budgeted time, we recommend you optimize the
algorithm by one of the following techniques:

• Execute from RAM.
• Offload some functionalities to CLA or other CPU.
• Scale the algorithm for every alternate cycle.
• Move the less critical functionalities like speed calculation, to a slower rate.

For more details on SIL/PIL code verification, see:

• Code Verification and Validation with PIL
• Code Execution Profiling with SIL and PIL
• SIL/PIL Manager Verification Workflow

 Code Verification and Profiling Using Processor-In-the-Loop Testing
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Deploy and Validate System

• “Prepare Target Hardware” on page 2-2
• “Add Hardware Drivers to the Simulation Model and Deploy to the Target Hardware”

on page 2-4
• “Understanding the Task Scheduling in Target Hardware” on page 2-6
• “Adding ADC Driver Library Block” on page 2-7
• “Adding Quadrature Encoder Driver Block” on page 2-9
• “Add PWM Driver Block” on page 2-11
• “Add Hardware Interrupt Trigger Block for Current Control Loop” on page 2-14
• “Run in Open-loop and Switch to Closed-loop” on page 2-15
• “Model Configuration and Hardware Deployment” on page 2-18
• “Validate the System” on page 2-19

2



Prepare Target Hardware
Perform these steps to prepare the hardware before you deploy the control algorithm, which you
develop using Motor Control Blockset, to the target hardware:

Verify the Direction of Rotation of Motor
The phase sequence of the motor connection in the target hardware determines the direction of the
motor rotation. The example models that are available in Motor Control Blocksetuse the position
ramp-up as positive direction or the speed measured as positive. It is recommended that you to spin
the motor in open loop with position ramp from 0 to 1 and ensure that the position feedback reads
positive. The example models in Motor Control Blockset use this convention for direction of rotation.

The example Quadrature Encoder Offset Calibration for PMSM Motor, for the supported hardware,
spins the motor and finds the offset between the d-axis of the rotor and encoder index pulse, when
rotor is aligned to the stator d-axis. The host model for this example shows red LED when direction is
opposite. In this case, you need to change the phase sequence of the motor wiring (swap any two
motor wires).

Refer to the example Hall Offset Calibration for PMSM Motor to identify the direction of rotation for
Hall sensor.

Note For the Hall sensor, ensure that you update Hall sequence in the Hall decoder library block is
the same sequence as the actual hall signals. If this is not correct, the direction read by the target
hardware is opposite to the actual direction.

Measure the Current Sensor Calibration
Signal conditioning for current sensor introduces an offset voltage in ADC input to measure both
positive and negative current. For example, ADC with 3.3 V voltage reference has an offset of 1.65 V
(BOOSTXL-DRV8305). This offset value varies on the tolerances of the passive components in signal
conditioning circuit. It is recommended to measure the ADC offset of the board in the initialization.

In most of the example models in Motor Control Blockset, in the hardware initialization block, the
average of current sensor ADC values are computed and used as ADC offset values for measuring the
current. ADC offset values are represented in ADC counts.

Refer to the example Run PMSM in Open-loop Control and Calibrate ADC Offset for calibrate ADC
offset manually and update in the script file.

Refer to the example Field Oriented Control of PMSM by Using Quadrature Encoder, Hardware Init
subsystem for calculate ADC offset before starting the closed-loop control.

Position Sensor Calibration
For PMSM, the position in current control algorithm should align with the rotor d-axis position. By
default, the QEP position sensor reads the mechanical position of the rotor with reference to its index
pulse. The position offset is the position read by the QEP when rotor d-axis is aligned to Ph-A. The
position read by QEP is corrected for this offset value to read the motor position. This corrected
motor position is fed as input to current control algorithm.

2 Deploy and Validate System
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Any delay between the rotor position and position in current controller affects the motor functionality
and performance.

Refer the example Quadrature Encoder Offset Calibration for PMSM Motor for more details.

Refer the example for Hall sensor position offset calibration.

See Also

 Prepare Target Hardware
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Add Hardware Drivers to the Simulation Model and Deploy to
the Target Hardware

This section provides the steps to add hardware drivers to a simulation model and deploy the model
to a target hardware.

As a reference, the example model mcb_pmsm_foc_sim is chosen to explain the steps involved in
hardware deployment. The model mcb_pmsm_foc_sim simulates the FOC algorithm for PMSM speed
control.

In this workflow, the target hardware LAUNCHXL-F28379D + BOOSTXL-DRV8305 is considered for
deploying a speed control algorithm for PMSM. The target hardware interface details are given
below:

Interface Pin on LAUNCHXL-F28379D
Phase-A input of motor ADCINC2
Phase-B input of motor ADCINB2
PWM A output from motor EPWM1A
PWM B output from motor EPWM2A
PWM C output from motor EPWM3A
Enable Driver BOOSTXL-DRV8305 GPIO124

These steps explain adding the hardware driver blocks from Embedded Coder Support Package for
Texas Instruments C2000 Processors to deploy the control algorithm in the Target hardware
(LAUNCHXL-F28379D + BOOSTXL-DRV8305).

1 “Understanding the Task Scheduling in Target Hardware” on page 2-6
2 “Adding ADC Driver Library Block” on page 2-7
3 “Adding Quadrature Encoder Driver Block” on page 2-9
4 “Add PWM Driver Block” on page 2-11
5 “Add Hardware Interrupt Trigger Block for Current Control Loop” on page 2-14
6 “Run in Open-loop and Switch to Closed-loop” on page 2-15
7 “Model Configuration and Hardware Deployment” on page 2-18

Refer Prepare Target Hardware for the pre-requisites for deploying the control algorithm in any
target hardware. For hardware details, refer to Hardware connections

Note In these workflow steps, variables are used for defining datatypes, execution time of current
controller, and execution time of speed controller. Refer to the initialization script of the example
model mcb_pmsm_foc_sim for the details of the variables defined in these steps.

Refer to Control Algorithm Design to implement a simulation model for PMSM motor FOC control
algorithm.

2 Deploy and Validate System
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Tip A basic understanding of Simulink is a prerequisite for following this workflow. Refer the
example model mcb_pmsm_foc_qep_f28379d for the details of ADC driver, QEP driver and
Hardware interrupt block as the same strategy is explained in these steps.

Note For target hardware other than LAUNCHXL-F28379D + BOOSTXL-DRV8305, follow the
workflow steps as explained in these steps, but select the driver blocks (ADC, PWM, Interrupt) from
the appropriate supported hardware library.

 Add Hardware Drivers to the Simulation Model and Deploy to the Target Hardware
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Understanding the Task Scheduling in Target Hardware
In the example model mcb_pmsm_foc_sim, the configuration of current controller and speed
controller are the two major software tasks. The current controller is scheduled to run for every Ts
(50 µsec for 20 kHz switching frequency) and the speed controller is Ts_speed (10*Ts). Current
controller reads the motor phase currents, reads the position from QEP positon decoder and
computes the PWM duty cycle to run the motor. Speed controller runs control loop and calculates Iq
reference for the current controller and thereby controls motor speed in closed-loop.

In the target hardware, current controller is synchronized with ADC interrupt (for every Ts) and
speed controller is time triggered for every Ts_speed (10*Ts).

The below figure shows the event sequence, interrupt trigger and software execution time for the
control algorithm in target hardware.

The event sequence is:

1 The processor peripheral PWM, which is center aligned (Up-Down Counter), triggers the SOC
(start-of-conversion) event to ADC module when PWM-counter-value equals the PWM-period.

2 ADC module converts the sampled analog signal to digital counts and triggers EOC (end-of-
conversion) event.

3 ADC’s EOC triggers the ADC interrupt.
4 Current controller is scheduled to execute in ADC interrupt.
5 Speed controller is time-triggered and scheduled for every Ts_speed.

In the above figure, Current controller execution time and Speed controller execution time are not in
scale. Refer to the processor datasheet for better understanding the functionality of the processor
peripherals ADC (Analog-to-digital converter) and PWM (Pulse-width modulation).
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Adding ADC Driver Library Block
In the example model mcb_pmsm_foc_sim, the Current controller block receives motor phase
current in ADC counts. Plant modelling converts the motor phase current in Ampere to ADC counts.
In the target hardware, current controller reads the motor phase current from ADC block.

For BOOSTXL-DRV8305, the motor's Phase-A current is read from ADC C2 and Phase-B current is
read from ADC B2. Select ADC module C, channel 2, for Motor Phase-A current; and ADC module B,
channel 2, for Motor Phase-B Current. For other target hardware, select the ADC module and channel
where motor phase currents are interfaced.

Select ePWM1_ADCSOCA as trigger source in ADC block as PWM library block triggers SOC0 (start-of-
conversion) event when PWM counter equals PWM period register.

Select ADCINT1 in ADC B module and this triggers ADC interrupt at EOC (end-of-conversion). In ADC
interrupt, FOC Current control algorithm is scheduled to execute.

In the Simulink library browser, select the ADC library block from Embedded Coder Support Package
for Texas Instruments C2000 Processor > F2837xD. Configure the ADC block to read the motor's
Phase-A and Phase-B current.

In ADC block mask dialog box, configure the ADC C module, Channel 2, to read Motor Phase-A
current, as shown in the below table.

Tab and Parameter in ADC Block Settings
SOC Trigger > ADC Module C
SOC Trigger > SOC trigger number SOC0
SOC Trigger > SOC trigger source ePWM1_ADCSOCA
Input Channels > Conversion channel ADCIN2
  

Rename the block as ADC_C_IN2

In ADC block mask dialog box, configure the ADC B module, channel 2 to read Motor Phase-B current
and trigger ADC interrupt (ADCINT1), as shown in the below table.

Tab and Parameter in ADC Block Settings
SOC Trigger > ADC Module B
SOC Trigger > SOC trigger number SOC0
SOC Trigger > SOC trigger source ePWM1_ADCSOCA
SOC Trigger > Post interrupt at AOC trigger
check box

on

SOC Trigger > Interrupt selection ADCINT1
SOC Trigger > ADCINT1 continuous mode
check box

on

Input Channels > Conversion channel ADCIN2
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Rename the block as ADC_B_IN2.
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Adding Quadrature Encoder Driver Block
In Simulink library browser, select eQEP block from Embedded Coder Support Package for Texas
Instruments C2000 Processor > F2837xD.

eQEP block reads the QEP pulses and increment the position count. This block outputs QEP encoder
pulse for mechanical rotor position wrap around when QEP Index pulse is read.

Refer section Quadrature Encoder Interface Configuration in Model Configuration Parameters for
Sensors for QEP configurations.

In c28x eQEP block mask dialog, configure the QEP (encoder pulse) to read QEP pulse count in TI
processor and wrap the QEP pulse counter output when index pulse is found, as shown in the below
table.

Tab and Parameter in eQEP Block Settings
General > Module eQEP1
General > Sample time -1
Position counter > Output position counter
check box

on

Position counter > Maximum position
counter value (0~4294967295)

2^16-1

Position counter > Position counter reset
mode

Reset on the first index event

Position counter > Output latch position
counter on index event check box

on

Position counter > Index event latch of
position counter

Falling edge

Rename the block as eQEP.

eQEP1 module is selected because QEP is connected to the QEP_A interface in LaunchPadXL28379d.
The Sample time is selected as -1 because the library block is in function-call triggered by ADC
interrupt synchronously. Maximum position counter value is 2^16-1 because Position counter is 16-
bit in library driver block. Position counter reset mode on index pulse wraps the position count on
index pulse.

Add the eQEP driver block module to the mcb_pmsm_foc_sim/Current control subsystem as
shown in the below figure:

 Adding Quadrature Encoder Driver Block
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Add PWM Driver Block
In Simulink library browser, select ePWM block from Embedded Coder Support Package for Texas
Instruments C2000 Processor > F2837xD

Configure ePWM1, ePWM2, ePWM3 for generating the PWM pulse. In the ePWM block mask dialog,
calculate the PWM counter period register value from the CPU frequency and PWM frequency. For
center-aligned PWM, divide by 2.

PWM counter period = CPU clock frequency / PWM frequency /2

Refer to the TMS320f28379d processor: ePWM peripheral for more details.

In the F2837x/07x/004x/38x ePWM block mask dialog, update the settings to configure PWM1 to
generate PWM pulses in the target hardware, as shown in the below table.

Tab and Parameter in ePWM Block Settings
General > Module ePWM1
General > Timer Period Enter the PWM period value in CPU clock cycle

• PWM counter period = CPU clock frequency /
PWM frequency /2

• For launchpad 28379d, clock frequency is 200
MHz. For PWM frequency of 20 kHz,

PWM counter period = 200e6 / 20e3 / 2;

PWM counter period = 5000
Counter Compare > Specify CMPA via Input port
Counter Compare > CMPA initial value Enter the PWM counter period/2 (2500)
Counter Compare > Specify CMPB via Input port
Counter Compare > CMPB initial value Enter the PWM counter period/2 (2500)
Deadband unit > Use deadband for ePWM1A
check box

on

Deadband unit > Use deadband for ePWM1B
check box

on

Deadband unit > Deadband polarity Active high complementary (AHC)
Deadband unit > Deadband Rising edge
(RED) period (0~16383)

15

Deadband unit > Deadband Falling edge
(FED) period (0~16383)

15

Event Trigger > Enable ADC start of
conversion for module A check box (only for
PWM1)

on

Event Trigger > Start of conversion for
module A event selection (only for PWM1)

Counter equals to period (CTR=PRD)

Rename the block as ePWM1
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In F2837x/07x/004x/38x ePWM block mask dialog, update the settings to configure PWM2 and PWM3
to generate PWM pulses in the target hardware. PWM2 and PWM3 are synchronized with PWM1.
Follow ePWM1 configurations other than Event Trigger and add the configurations as shown in the
below table:

Tab and Parameter in ePWM Block Settings
General > Module ePWM2
General > Timer Period Enter the PWM period value in CPU clock cycle

• PWM counter period = CPU clock frequency /
PWM frequency /2

• For launchpad 28379d, clock frequency is 200
MHz. For PWM frequency of 20 kHz,

PWM counter period = 200e6 / 20e3 / 2;

PWM counter period = 5000
General > Synchronization action Set counter to phase value specified via

dialog
General > Counting direction after phase
synchronization

Count up after sync

General > Phase offset value (TBPHS) 0
Counter Compare > Specify CMPA via Input port
Counter Compare > CMPA initial value Enter the PWM counter period/2 (2500)
Counter Compare > Specify CMPB via Input port
Counter Compare > CMPB initial value Enter the PWM counter period/2 (2500)
Deadband unit > Use deadband for ePWM1A
check box

on

Deadband unit > Use deadband for ePWM1B
check box

on

Deadband unit > Deadband polarity Active high complementary (AHC)
Deadband unit > Deadband Rising edge
(RED) period (0~16383)

15

Deadband unit > Deadband Falling edge
(FED) period (0~16383)

15

Rename the blocks as ePWM2 and ePWM3.

CMPA and CMPB are selected as input ports where PWM duty is given as input. The range vary from
0 to PWM_counter_period. PWM outputs when PWM up-counter matches CMPA and PWM down-
counter matches CMPB. By default, duty cycle 50% is input by selecting PWM counter period/2.

Enable dead time in the ePWM configuration. In the Event trigger of PWM1, select ADC SOC event
when PWM counter equals the PWM period. In ADC, select the start trigger as ePWM1_ADCSOCA.

Synchronize ePWM2 and ePWM3 with ePWM1 by selecting the synchronizing when PWM counter is
0 in ePWM2 and ePWM3.
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ePWM blocks expects the duty cycle value to range from 0 to period counter register (5000).
Control_System outputs PWM in the range -1 to 1. The Control_System subsystem output -1 to 1 is
scaled to 0 to 5000 (period counter value).

For simulation, add a variant source/sink to the hardware driver block for simulation and code-
generation.
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Add Hardware Interrupt Trigger Block for Current Control Loop
In Simulink library browser, select C28x Hardware Interrupt block from Embedded Coder Support
Package for Texas Instruments C2000 Processor > Scheduling.

In C28x Hardware Interrupt block mask dialog, update the settings to configure hardware interrupt
ADCINT1. From the C28x Hardware Interrupt, identify the PIE and CPU for ADCINT1.

Parameter in C28x Hardware Interrupt Block Settings
CPU interrupt numbers [1]
PIE interrupt numbers [2]

In Current control, add a Trigger block and change the Trigger type to function-call. Connect
this subsystem trigger input to the Hardware interrupt block as shown in the below figure.

In the Rate Transition block's input to Current Control, change the sample time to -1.

Add a Function-Call Generator block in variant source to support the model simulation. In Function-
Call Generator, set the Sample time as Ts (50e-6).

Simulate the model with updated drivers blocks and ensure that the simulation results in Simulink
Data Inspector. Variants ensure that ADC, PWM drivers and interrupts are not active for simulation.
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Run in Open-loop and Switch to Closed-loop
PMSM motor with QEP requires initial position to start the motor. Because we do not have a way to
know the initial position at start, you need to spin the motor in open-loop and ensure QEP index pulse
is read at least once. At QEP index pulse, QEP resets its position to align with the motor mechanical
angle. The motor switches from open-loop run to closed-loop speed control to maintain the reference
speed. This step is applicable for QEP sensor and not for Hall position sensor. Hall signal outputs
initial position of the rotor segment from Hall signal port inputs.

Follow these steps to implement open-loop run and switching to closed-loop control:

1 Copy mcb_pmsm_foc_qep_f28379d/Current Control/Control_system. This adds the
logic to run the motor in open-loop. This switches the control from open-loop to closed-loop if
EnClosedLoop input is 1. Add an input port EnClosedLoop. This adds data store read for Enable
and SpeedRef. Add a data store memory Enable, EnClosedLoop and SpeedRef in Top model level.

In Open Loop Start-up, the sign of the SpeedRef decides the direction of the initial run. If
SpeedRef is negative, motors spins in opposite direction in open loop start-up.

2 Copy mcb_pmsm_foc_qep_f28379d/Current Control/Input Scaling/Calculate
Position and Speed. This adds a block IndexFinder. When QEP index pulse is detected for
the first time, IndexFound is set as 1. Add an output port IndexFound and rename as
EnClosedLoop.
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3 Connect the output port EnClosedLoop from Input Scaling subsystem to Control_System input
port EnClosedLoop as shown in the below figure.

4 Copy mcb_pmsm_foc_qep_f28379d/Speed Control/Speed_Ref_Selector. This block uses
speed_ref when closed-loop control starts. For smooth transition from open-loop to closed-loop,
the speed measured is commanded as speed reference in open-loop. Add a data store write,
SpeedRef to the PI_Controller_Speed input.
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5 In Plant modelling, a step input is added to simulate the IndexFound for simulation. Rename the
step input as Switch to closed loop. Refer to mcb_pmsm_foc_qep_f28379d/Inverter
and Motor -Plant Model/Sensor_Measurments for the step input to switch to closed loop.
Choose Step time as 0.1 and sample time as Ts_motor.

6 Create Data store memory for EnClosedLoop, Enable and SpeedRef. Enable is used to reset the
PI integrator before spinning the motor. Add default values for data store memory: Enable = 1,
EnClosedLoop = 0, and SpeedRef = 0.25.

Note Data store memory is used to share the data across the subsystem
7 Run the simulation and observe the speed reference and speed feedback.
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Model Configuration and Hardware Deployment
Select the target hardware in the model configuration. To do this, open the Configuration Parameters
dialog box, go to Hardware Implementation > Hardware board, and select TI Delfino F28379D
LaunchPad.

For any other custom board, select the appropriate processor and edit the peripheral details in
Hardware board > Target hardware resources.

Refer Model Configuration Parameters for Sensors for solver configurations, Quadrature Encoder
Interface configuration.

Refer Hardware Connections for C2000 LaunchPadXL hardware connection. Connect the BOOSTXL-
DRV8305 and QEP connector to the LaunchPad XL. The BOOSTXL-DRV8305 fixed to the
LaunchPadXL requires Enable signal. This signal is connected to the GPIO124 of the processor.

In Simulink library browser, select Embedded Coder Support Package for Texas Instruments C2000
Processor > F2837xD > Digital Output, and change the settings as shown in this table.

Parameter in Digital Output Block Settings
GPIO Group GPIO120~GPIO127
GPIO124 on

Rename the block as GPIO_124.

Add a constant block with value 1 as input to the GPIO124 as shown in the figure below:

In the model, select Build, Deploy & Start in the Hardware tab. This generates C-code, CCS
project and target-specific out file. This target specific out-file is downloaded to the target through
serial communication and runs the algorithm in hardware.

When model is deployed to the target, motor spins in open-loop and starts running in closed loop
speed control. In order to monitor and debug the signals, serial communication is recommended.
Refer the example model mcb_pmsm_foc_qep_f28379d for implementing the serial receive and
transmit to the host model. From serial receive block update the data store memory to start and stop
the motor.
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Validate the System
In this section...
“Calculate the Physical Motor Load in Target Hardware” on page 2-20
“Compare the Speed Controller Response in Simulation and in Target Hardware” on page 2-21
“Compare the Current Controller Response in Simulation and in Target Hardware” on page 2-23

This section explains how to evaluate the accuracy of the plant (motor and inverter) model of physical
motor and load connected to the motor. You need to validate the plant model and verify the results
are close to the physical system measurements before using the plant model for Advanced algorithm
implementations. You can validate the system by comparing the step response of speed control and
current control in simulation and in target hardware connected to the motor.

Use the example Control Parameter Gain Tuning (Manual) in Hardware and Plant Validation to
measure the step response of current controller and speed controller. The host model in this example
communicates the current reference to the target hardware and measures the step response of the
current controller.

Note

• You can use any speed control example from Motor Control Blockset for system validation.
• Validate speed control by comparing the step response in simulation and hardware test values.
• Validate d-axis current control by electrically or mechanically locking the rotor and comparing the

step response in simulation and hardware test results.

There is also another way to validate d-axis current control: Run the motor at a constant speed
and give step change in reference d-axis current. This requires two modifications in the Speed
Control subsystem of the target model. Set a constant speed reference input. Command Id
reference from host model. Compare the step response of d-axis current in simulation and in
hardware tests.

• Validate q-axis current control by mechanically coupling the motor with an external dynamometer
running in speed control. This requires two modifications in the Speed Control subsystem of the
target model. Discard the Id and Iq reference from Speed PI Controller output. Command Id
reference from host model. Compare the step response of q-axis current in simulation and in
hardware tests.

Warning While taking step response in d-axis current control, always use positive step. Negative
values of Id can damage the Permanent Magnet in the motor.
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Refer the example Control Parameter Gain Tuning (Manual) in Hardware and Plant Validation for
deploying the model to the hardware. Perform motor parameter estimation as accuracy of the plant
modelling is important to match the simulation results with hardware measurements.

Calculate the Physical Motor Load in Target Hardware
Before comparing the controller responses in simulation and target hardware, the load torque in
plant simulation must match the motor load in physical system. Follow the below steps to calculate
the load torque in physical system and update the calculated load torque to the plant model:
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1 Run the host model and connect the target hardware through serial communication.
2 In Select Motor Operating mode, select Speed control.

Motor spins in speed control.
3 Select Id_meas in Monitor Signal #1 and Iq_meas in Monitor signal #2. Read the Id_meas and

Iq_meas from scope.
4 Convert the PU current to Amperes by multiplying with PU_System.I_base.
5 Calculate load torque in Nm using the below formula:

Tload = 1.5 * pole_pair [flux_pm * Iq + (Ld – Lq) id*Iq]

where,

Flux_pm = permanment magnet flux linkage (pmsm.Flux_PM)

Ld, Lq = Inductance in H (pmsm.Ld, pmsm.Lq)

Id, Iq = current measured in A

Note The measured Id current Id_meas (in PU) equals 0.
6 In mcb_pmsm_operating_mode_f28379d/Motor and Inverter/Plant Model (sim), enter

the above calculated value in LdTrq as an input to PMSM motor block.

Compare the Speed Controller Response in Simulation and in Target
Hardware
In simulation, give a speed step input and note the speed response. On target hardware, command
the speed reference step input and observe the speed feedback. Compare the results step response of
simulation and target hardware to know the accuracy of the plant modelling.

1 Simulate the model mcb_pmsm_operating_mode_f28379d. Plot the speed reference and speed
measured signal. By default, a step input of 0.2 to 0.5 is input in the simulation model.

2 Run the host model and communicate the target hardware.
3 In Select Motor Operating Mode, change the mode from Stop to Speed control
4 Select the Speed_ref in Monitor Signal#1 and Speed_meas in Monitor Signal#2 in host model.
5 Open the scope in the host model
6 In host model interface, change the speed_ref from 0.2 to 0.5 and observe the step change in

scope.
7 As shown in below figure, compare the step response of the hardware results with simulation

results.

Step Response Analysis for Speed Controller

The step response from simulation is compared with the measurements made from the target
hardware. The results may vary depends on the tolerances in plant modelling. Overall, the simulation
results are close to measurement values from hardware.
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 Peak overshoot
(%)

Peak time (ms) Rise time (ms) Settling time
(ms)

Simulation results 20.13% 16.023 5.561 61.027
Hardware results 22 % 14.324 5.041 51.148

Compare the Current Controller Response in Simulation and in Target
Hardware
In simulation, give step current reference and note the current response. This example requires
changes to simulate the current reference step input. Refer the below steps for model changes and
this applies only for simulation. In target hardware, command the current reference step input and
observe the current feedback. Compare the results step response of simulation and target hardware
to know the accuracy of the plant modelling.

1 For hardware measurements, run the host model.
2 In Select Motor Operating Mode, change the mode from Stop to Torque control.
3 Select the Id_ref in Monitor Signal#1 and Id_meas in Monitor Signal#2 in host model.
4 Open the scope in the host model
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5 Change the Id_ref from 0.02 to 0.22 and observe the step change in scope. Ensure that the
motor is not spinning. The scope displays the step response for Id_ref input.

6 For simulation, two changes are required in the simulation model. In
mcb_pmsm_operating_mode_f28379d/TorqueControl/Control Modes/torque_control
add a step input for d-axis current controller. Choose step input as 0.02 to 0.22 at 1 second.
Select Time sample as -1. In Data-type conversion block, select the output datatype as
fixdt(1,32,17).

7 In mcb_pmsm_operating_mode_f28379d/Motor and Inverter/Plant Model (sim), PMSM
motor block, change the Mechanical Input Configuration to Speed and input 0 to Spd (input
port).

8 Run the simulation and measure the Idref_PU and Idmeas_PU in Simulink Data Inspector.
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9 As shown in the below figure, compare the step response of the hardware results with simulation
results.

Step response analysis for D-axis current controller

The scope image from simulation is compared with the measurements made from the target
hardware. The results may vary depending on the tolerances in plant modelling. With an accurate
plant model, the simulation results get closer to the measured results from target hardware.
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 Peak overshoot
(%)

Peak time (µs) Rise time (µs) Settling time
(µs)

Simulation results 14 % 300 150 500
Hardware results 8.18 % 400 150 800

Tip If simulation results differs a lot with the hardware measurements, verify the delay and scaling
factor in the plant model.

Note For q-axis current controller, align motor to the d-axis and mechanically lock the rotor. Follow
the same steps as D-axis current controller for comparative analysis. External mechanical locking can
be achieved through mechanical braking system or coupled with a dyno motor running in speed
control.

The accuracy of the plant modelling improves the accuracy of simulation and match the test
hardware results.
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Plant Modeling

• “Creating Plant Model Using Motor Control Blockset” on page 3-2
• “Create a Model with PMSM Block and Use Motor Parameters” on page 3-3
• “Add Average-value Inverter Block” on page 3-5
• “Create Motor Phase Current Sensing and Signal Conditioning Subsystem” on page 3-6
• “Create Position Sensing Subsystem” on page 3-7
• “Add Delay in Plant Model” on page 3-8
• “Integrate the Blocks and Subsystems” on page 3-9
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Creating Plant Model Using Motor Control Blockset
An accurate plant model is a vital part of control system development using Motor Control Blockset.
After creating an accurate plant model, you can verify the functionality of the control system, conduct
closed-loop model-in-the-loop tests, tune gains using simulation, and optimize the design, before you
deploy the same on the actual plant.

The creation of plant model using Motor Control Blockset includes the modelling of the following
components to simulate the functional behavior in a simulation environment:

• Permanent Magnet Synchronous Motor (PMSM)
• Average-value Inverter
• Sensors and signal conditioning circuits
• Processor peripherals: Analog-to-Digital converter (ADC) and Pulse-width-modulator (PWM)

The functionality of the plant model that you create can be verified by performing these tasks:

1 Reading the normalized PWM duty cycle from the control algorithm
2 Simulating the motor for the connected load
3 Obtaining the output motor phase current (in terms of ADC counts) and the output motor

position (in terms of encoder pulse counts) from the simulation

The workflow to create a plant model involves these steps.

Note See the plant model in mcb_pmsm_foc_qep_f28379d.

1 “Create a Model with PMSM Block and Use Motor Parameters” on page 3-3
2 “Add Average-value Inverter Block” on page 3-5
3 “Create Motor Phase Current Sensing and Signal Conditioning Subsystem” on page 3-6
4 “Create Position Sensing Subsystem” on page 3-7
5 “Add Delay in Plant Model” on page 3-8
6 “Integrate the Blocks and Subsystems” on page 3-9
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Create a Model with PMSM Block and Use Motor Parameters
In Motor Control Blockset, there are two methods to create a model with PMSM motor block:

• Perform the Parameter Estimation operation using Motor Control Blockset and open the Simulink
model with PMSM motor block:

Motor Parameter Estimation workflow in Motor Control Blockset helps you to find the motor
parameters by performing the series of tests on the motor. For details, refer to “Estimate Motor
Parameters by Using Motor Control Blockset Parameter Estimation Tool”. After a successful motor
parameter estimation, click Open Model in the parameter estimation host model. A new model
opens with the Interior PMSM block (from the Simulink Library of Motor Control Blockset) along
with the estimated motor parameters.

• Create a new model and add PMSM motor block from Motor Control Blockset library:

Create a new Simulink model and add the Surface Mount PMSM block from the Motor Control
Blockset library in Simulink library browser. Open the block mask and enter the motor
parameters. The motor parameters can be obtained from:

• Parameter Estimation workflow in Motor Control Blockset (for details, refer to “Estimate Motor
Parameters by Using Motor Control Blockset Parameter Estimation Tool”)

• From the datasheet of the motor or from known sources
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In Surface Mount PMSM block, choose Simulation type as Discrete and enter the value of
Sample Time (Ts) as 25e-6 (half of the control frequency). Discrete simulation improves the
simulation speed.

If parameters are available in mat-file format, click Browse in the Surface Mount PMSM block
mask to locate the mat-file and then click Load from file to load the parameter.

The default motor parameter files are available in the location. <matlabroot>\toolbox
\autoblks\autoblksshared\mcbtemplates for your reference.

In the Surface Mount PMSM block mask, motor parameters can also be represented as workspace
variables and update these workspace variables using m-script in the model initialization callback.
Refer to the file mcb_SetPMSMMotorParameter.m for the reference motor parameters for some
of the commercially available motors (for details about this script, see “Estimate Control Gains
from Motor Parameters”)
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Add Average-value Inverter Block
In the Simulink model that contains the Surface Mount PMSM block, add an Average-Value Inverter
block from Motor Control Blockset library. Average-value inverter block reads the normalized PWM
duty-cycle and DC voltage input (in volt) and outputs the phase voltages. Connect the Vabc output of
Average-Value Inverter block to the PhaseVolt input of the Surface Mount PMSM block.
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Create Motor Phase Current Sensing and Signal Conditioning
Subsystem

In physical hardware, the motor current read by current sensors are filtered and scaled to ADC
measurable range. The ADC peripheral in processor reads the current signals and outputs ADC
counts for the current control algorithm. This figure shows an example of modelling the motor phase
current sensing and signal conditioning algorithm.

The maximum measurable peak current is considered as Base current and this corresponds to the
full-scale ADC values from offset.

ADC counts = ( (ADC counts full scale/2) / Base current or max measurable current in A ) + ADC
offset.

Refer to the file mcb_SetInverterParameters.m for default inverter and signal conditioning
circuit parameters for commercially available inverters. For any other configurations, create an
inverter type in mcb_SetInverterParameters.m and use this in the model initialization script for
parameter initialization. If low-pass filters involved in the current measurement, add an average
model for filtering the current.
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Create Position Sensing Subsystem
The Position Sensing Subsystem reads motor position from the Surface Mount PMSM block and
simulates QEP encoder pulse counts. The Surface Mount PMSM block outputs mechanical position in
rad/s.

Convert the position in (0 to 2π) rad/s to QEP encoder counts as shown in this figure.

For details about detecting the QEP index position offset with respect to the rotor d-axis, see
“Quadrature Encoder Offset Calibration for PMSM Motor”.
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Add Delay in Plant Model
You can add delay in the plant model to simulate the delay due to control algorithm processing delays
(in hardware) and PWM switching. The algorithm processing delay in the processor is the time taken
to update PWM. PWM switching delay is usually half the switching time period.

For adding delays in discrete time solver with sample rate of Ts/2 (half the switching time period), the
processor computation delay and PWM switching delay are factored as Z-1 (Ts/2).
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Integrate the Blocks and Subsystems
The final step of plant modeling using Motor Control Blockset is to integrate the blocks and
subsystems that you created using the previous steps. The completed plant model accepts the
normalized PWM from controller and outputs the motor phase currents and position.

 Integrate the Blocks and Subsystems
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